
Visualization '94
Washington, DC

October 17-21, 1994

Law
re

nce

Liver
m

ore

Nati
onal

Lab
ora

to
ry

UCRL-JC-116231 Rev. 1

Visualizing 3D Velocity Fields
Near Contour Surfaces

N. Max
R. Crawfis
C. Grant

July 1994

This is a preprint of a paper intended for publication in a journal or proceedings.
Since changes may be made before publication, this preprint is made available
with the understanding that it will not be cited or reproduced without the
permission of the author.

PREPRINT

This paper was prepared for submittal to the

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor the
University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or the University of California, and shall not be used for advertising
or product endorsement purposes.

Visualizing 3D Velocity Fields Near
Contour Surfaces

Nelson Max
Roger Crawfis
Charles Grant

Lawrence Livermore National Laboratory
Livermore, California 94551

Abstract

Vector field rendering is difficult in 3D because the
vector icons overlap and hide each other. We propose four
different techniques for visualizing vector fields only near
surfaces. The first uses motion blurred particles in a thick-
ened region around the surface. The second uses a voxel
grid to contain integral curves of the vector field. The third
uses many antialiased lines through the surface, and the
fourth uses hairs sprouting from the surface and then
bending in the direction of the vector field. All the methods
use the graphics pipeline, allowing real time rotation and
interaction, and the first two methods can animate the tex-
ture to move in the flow determined by the velocity field.

Introduction

There are many representations of velocity fields:
streamlines, stream surfaces, particle traces, simulated
smoke, ..., etc. One of the simplest is to scatter vector
icons, for example, small line segments, throughout the
volume. There are two fundamental problems with such an
approach. First, the 2D projection of a line segment is am-
biguous; many 3D segments can have the same projection.
Second, densely scattered icons can overlap and obscure
each other, leading to a confusing image. These problems
can be partially solved with real time (or playback) anima-
tion, since motion parallax can resolve the projection am-
biguities. In addition, icon motion in the velocity direction
can give added visual information.

The second problem can also be resolved by restrict-
ing the icons to special regions of interest. For example, in
[Crawfis92] and [Crawfis93], the vectors’ opacity depend-
ed on their magnitude, so only the regions of highest ve-
locity were emphasized. In this paper we take the region of
interest to be on or near a contour surface. The scalar func-
tion being contoured can come directly from the vector
field, for example, the vector magnitude or a vector com-

ponent. It can also be an independent scalar field defined
on the same volume, for example, porosity in a flow simu-
lation, or a linear or quadratic function for interactive slic-
ing. We report here on four different techniques for
visualizing velocity fields near contour surfaces.

Spot Noise

Van Wijk [vanWijk91] generated a directional texture
by superimposing many oriented shapes such as ellipses.
For texture on curved surfaces, the texture plane is
mapped to the surface, and the texture generation accounts
for the stretching induced by the mapping. Van Wijk visu-
alized a tangential velocity field on a ship hull with this
method. Cabral [Cabral93] has generated similar but more
accurate 2D velocity textures by “Line Integral Convolu-
tion” of random noise, and Forssell [Forssell94] extended
this with mapping to visualize velocity near an airplane
surface. Both of these techniques can be animated to make
the texture flow. However, they are not applicable to con-
tour surfaces, which cannot easily be parameterized.

Stolk and van Wijk [Stolk92, vanWijk93] have also
visualized flows with surface particles: individual spots
motion-blurred to elliptical shapes and composited sepa-
rately onto the image in software. Each spot has a surface
normal, which is carried along appropriately by the flow,
and used in the shading. These particles can also move in
animation, but only on surfaces related to the flow, not on
fixed contour surfaces of an unrelated function. Here we
use the same sort of spots, but take advantage of hardware
rendering for interactive speed. We do not restrict the par-
ticles to lie on a surface, and therefore do not use normals
in the shading. Instead, we think of the particles as
spheres, which are motion blurred to ellipsoids. We only
draw particles which lie within a specified distanceD of
the contour surface of interest.

We should emphasize that most of the previous work
represents tangential flows on a surface, for example, a
stream surface, but the problem we are trying to address

uses contour surfaces of functions possibly unrelated to
the velocity vectors, which are therefore not usually tan-
gent to the surface.

We assume that the vector field V(x, y, z) and the sca-
lar functionf(x, y, z) are defined on the same rectilinear lat-
tice. To estimate the distanced(x, y, z) of a particle at (x, y,
z) from the contour surfacef(x, y, z) = C, we use a tech-
nique described by Levoy [Levoy88]. We approximate the
gradient f(x, y, z) by finite differences of the neighboring
vertex values off, and store the magnitude |f(x, y, z)|.
Then

where the quantitiesf(x, y, z) and | f(x, y, z)| are trilinearly
interpolated from the eight surrounding lattice vertices.

We wish to randomly deposit particles uniformly into
the region R whered(x, y, z) < D. Assuming the specified
distanceD is larger than the cell size in the lattice, the fol-
lowing procedure does this efficiently. We mark all lattice
vertices which are withinD of the contour surface, and
then mark all cells which have at least one marked vertex.
These markings are updated whenever the user changesC
or D. We randomly insert a specified numberN of particles
in each marked cell, and render a particle at (x, y, z) only if
d(x, y, z) < D.

The particles are kept in a linked list, which also con-
tains their ages. They are moved in each time step by sec-
ond order Runge-Kutta integration, using velocities
trilinearly interpolated from the lattice vertices. If a parti-
cle moves into an unmarked cell or out of the data volume,
it is scheduled for deletion from the linked list. At each
time step, we also check that all marked cells still haveN
particles, and add or delete particles as necessary.

The particle size is proportional to a factorb = s(d),
which is equal to 1 for smalld and decreases continuously
to zero whend reachesD. Thus the particles fade in as
they first cross intoR, and fade out as they leave. Since a
particle could randomly be created near the contour sur-
face to replace another particle leaving a cell, we actually
takeb = minimum(s(d), ka), wherek is a constant anda is
the age of the particle. This makes new particles fade in at
birth. They are similarly faded out when deleted.

As in [vanWijk93], we draw the particles as blurred
ellipses, stretched out in the direction of motion. However
we do the compositing using the hardware in our SGI
workstations. A single blurred disk is used as the texture,
and is mapped to a 3D rectangle. Ifr is the radius of the
particle, P is its position vector relative to the viewpoint,
andV is its velocity vector, then the rectangle vertices are
atP + S+ T, P + S- T, P - S- T, andP - S+ T, where

∇
∇

d x y z, ,() f x y z, ,() C−
∇f x y z, ,()

=

∇

 and .

Basically,T is along the velocity direction, but the second
term is added so that the particle will shrink to a small
round dot of radiusr when the velocity approaches zero or
is oriented near the viewing direction. Because these semi-
transparent particles are sent through the graphics pipeline
after the opaque objects, they can be combined with
opaque contour surfaces in the z-buffer and be appropri-
ately hidden. Currently they are all the same color, so they
do not need to be sorted. (See [Max93].) Figure 1 shows a
collection of ellipsoidal motion-blurred particles near a
contour of velocity magnitude on a “tornado” velocity data
set. Figure 2 includes a contour surface of velocity magni-
tude, which hides some of the dots. Figure 3 represents a
0.5 micron simulation of the airflow through a HEPA filter.

S r
V P×
V P×

= T V r
S P×
S P×

+=

Figure 1. Spot noise near contour surface

Figure 2. Spots noise with contour surface.

An animation has been produced showing the flow at vary-
ing velocity contours, from high to low. A contour region
of moderate flows is illustrated here. Figure 4 illustrates a
velocity contour near zero and close to the metallic fibers.

The implementation is in C++, using SGI’s Inventor
for the user viewing interface. The contour valueC and
width D are controlled by sliders. On our office worksta-
tions with Elan™ graphics, the actual texture mapping is
done in software, but the same code automatically calls the
hardware texture mapping on the Onyx™ workstation in
our Graphics Lab. We can thus get real time rotation and
particle motion on small data sets, and interactive perfor-
mance on large data sets.

Particle traces on 2D surfaces

The goal of this technique is to represent the magni-
tude and direction of a vector field at each point on an ar-
bitrary set of surfaces (not necessarily a contour surface),
allowing long flowlines to be easily understood, but with-
out having the visualization become too dense or too
sparse at any point.

To do this we try to draw long, evenly spaced particle
traces. The beginning and ends of these traces do not nec-
essarily indicate a source or sink in the vector field. Traces
begin and end over the entire surface in order to keep a
nearly constant density of lines in the image. The particle
trace lines are broken into small segments of contrasting
color. The length of the segments represents the magnitude
of the vector field (i.e. a constant time interval). The direc-
tion of the segments is the direction of the vector field at
that point projected onto the 2D surface. In still pictures,
using a sawtooth shaped color map across each segment
resolves the directional ambiguity of the lines. We experi-
mented with several different projections of the vector
field to the surfaces.

Once the particle traces are calculated and rendered,
color table animation can be used to add motion to the dis-
play so that the lines “flow” in the direction of the vector
field with a velocity proportional to the magnitude of the
vector field at each point. This flow animation was a pri-
mary goal of this technique. Color table animation is an
old technique [Shoup79] which has been applied to flow
visualization by Van Gelder and Wilhelms [VanGelder92].

The first step in this technique is to scan convert the
surfaces into an octree. A piecewise linear representation
of the 2D surface(s) is stored in the octree. Each cell holds
a plane equation (four numbers). The octree allows us to
use any kind of surface (as long as the surface does not
pass through any leaf cell twice, which is unavoidable for
self-intersecting surfaces). The octree allows fast access to

adjacent cells but is much more memory efficient than a
full 3D grid. Only those cells that intersect the surfaces are
present in the octree. In this implementation, the surfaces
are subdivided down to a constant size cell.

A seed point is then chosen to try to place the first par-
ticle trace. The particle is advected along the surface in
both directions, forward and backwards, using a variable
step size Euler’s method. We continue to advect the parti-
cle until it reaches a stagnation zone, reaches an edge of
the surface, or becomes too close to its own trace or that of
another particle. The particle trace is considered accept-
able if it is longer than the current length threshold. If the
trace is too short, it is erased and a new seed point is tried.
The length of the erased trace is preserved in the cells in
which it passed. This value is used to prevent extensive re-
calculation while backtracking.

The seed points are chosen on an integer lattice in a
spatially hierarchial manner so that the first particle traces
will start well away from each other and are likely to be
traced for long distances before getting too close to other
lines. Random placement of seed points would also be
likely to yield long lines for the first points chosen, but
would not guarantee that some seed point was near every
point on the surfaces. All seed points, at some particular
resolution, are tried first using a large length threshold.
Then the length threshold is reduced and the process is re-
peated. Gradually reducing the length threshold from
some maximum to minimum produces the most esthetical-
ly pleasing distribution of particle traces, but takes longer
to calculate than using a single length threshold value.

 Projections

Four techniques were tried for projecting a 3D vector
onto the 2D surface. Three techniques, normal, xy normal
and cylinder projections, are viewpoint independent. The
eye projection technique is viewpoint dependent. View-
point dependent techniques require the particle traces to be
recalculated each time the viewpoint is changed, while
viewpoint independent techniques do not require this re-
calculation. To compare these four projections and their
ability to indicate the 3D flow, we have used a simple test
case: a constant velocity field.

Normal Projection

With the normal projection technique, the 3D vector
at a point on the surface is projected onto the surface in a
direction parallel to the surface normal at that point. This
projection, while being very straightforward, can yield
very nonintuitive particle traces. Figure 5 shows the torna-
do surface in a vector field in which all vectors are in ex-
actly the same direction, pointing to the upper right at 45

degrees. The uniformity of the vector field is not at all ap-
parent with this projection.

XY Normal Projection

The xy normal projection technique is designed for
producing film loops where the viewpoint is rotated about
the z (vertical) axis. In this technique the 3D vector is pro-
jected onto the surface in the direction of a vector which
consists of only the x and y components of the surface nor-
mal at that point. As can be seen in figure 6, this preserves
the z component of the vector field and gives a somewhat
more intuitive visualization, but the uniformity of the vec-
tor field is still not readily apparent.

Figure 5. Normal Projection

Figure 6. XY Projection

Cylinder Projection

The cylinder projection technique is also designed for
producing film loops where the viewpoint is rotated about
the z (vertical) axis. In this technique the 3D vector is pro-
jected onto the surface in the direction of a vector which
points away from the rotational axis. As can be seen in fig-
ure 7, this gives results very similar to the xy normal pro-
jection. This projection is only suitable for simple surfaces
which are centered on the rotational axis.

Eye Projection

In the eye projection technique, the 3D vectors are
projected onto the surfaces in a direction parallel to the
viewing direction. As shown in figure 8, for a single image
this technique produces the most intuitive representation
of the constant direction vector field. The uniform direc-

Figure 7. Cylinder Projection

Figure 8. Eye Projection

tion of the vector field is readily apparent. When changing
the viewpoint for a film loop, the projection of the 3D vec-
tors to the surfaces changes, resulting in a different set of
particle traces. We attempt to minimize the visual effect of
these changes by using the same set of trial seed points as
the previous frame, and by starting each particle trace with
the same “phase” as a nearby trace in the previous frame.
Figure 9. is a color reprint of Figure 6..

In conclusion, the uniformly spaced, animated parti-
cle traces are an effective means of visualizing a 2D vector
field, but the projection of a 3D vector field onto a 2D
curved surface loses and distorts some of the information
from the 3D field, limiting the usefulness of these tech-
niques for 3D. This is a difficulty for our goal of represent-
ing flows non-tangential to the surface. It is still an
effective technique for stream surfaces or other tangential
flows.

Line Bundles

Line bundles use the back-to-front compositing and
overlapping of splatting to construct a volume of tiny line
segments. Taken as a whole, these line segments construct
the appearance of a fibrous volume. While drawing many
tiny vectors to represent a vector field is not new, we have
combined this idea with back-to-front compositing and
techniques to generate anisotropic textures (see Figure
10). Our basic implementation plan is to extend the con-
cept of splats - each data point is composited into the
frame buffer in a back-to-front manner [Crawfis93]. Rath-
er than trying to reconstruct a C1 3D signal, we want a
very discontinuous, yet antialiased, 3D volume representa-
tion. At each data point, a collection of antialiased lines is
splatted. The lines are randomly scattered within a 3D
bounding box associated with each splat. The hue, satura-
tion, value and center position within the box are all ran-

Figure 10. Line bundle tornado with magnification

domly perturbed. The direction of each line is in the
direction of the flow field. The jittering of the color and
position produce a nice anisotropic texture oriented in the
direction if the flow field, even when the lines are so dense
that there is no space between them. The primary color
about which we jitter can be different for each splat or can
be fixed for the entire volume. Having different colors per
splat allows us to encode additional information about the
volume, either the vector magnitude, some separate scalar
field, or a positional indicator. Using a single primary col-
or allows us to precompute the line bundle into a GL ob-
ject, which is then very rapidly reoriented and redrawn at
each data point. Line bundles in excess of over 300 line
segments can be used for each data point with no degrada-
tion in real-time performance.

Three key issues are addressed in these fibrous vol-
umes: back-to-front compositing for a thin wispy-like ap-
pearance, antialiased lines with transparent heads and tails
to avoid unwanted edges, and controlled jittering of colors
and positions to avoid regular patterns or completely filled
regions. Figure 10 shows a sample tornado data set using a
homogenous color that is heavily jittered. A zoomed in
portion of the image is to the left of it. Notice the antialias-
ing and lack of any hard edges. Figure 12 shows the wind
field over North America in a simulated global climate
model. Data points close to the isocontour surface of a par-
ticular wind velocity magnitude were chosen for the line
bundle splatting. Figure 11 represents the airflow through
a filter substrate known as aerogel.The data points were
chosen to lie close to the surface of the filter particles. This
provides a nice mossy appearance. In Figure 13, points
were chosen near a velocity contour of the HEPA filter
simulation, and are color coded by velocity, giving a solid
volume with a fibrous texture. These images can be gener-
ated in real time on a mid- to high-end graphical worksta-
tion.

Figure 11 Line bundle near aerogel surface

Conclusions

How do these techniques relate to each other and pre-
viously developed techniques? Table 1. correlates 3D vec-
tor field visualization techniques to various attributes and
problem tasks. Our motto throughout this research is that
we are not developing better techniques, but expanding on
the set of tools available. Different scientists can gain in-
sight better with different tools and many tools are usually
required in an analysis. We have not tried to be all encom-
passing or thorough. There are many other techniques that
should be added: stream tubes, topology extraction, shad-
ed particles, etc. There are also many other characteristics
that should be considered. Hopefully it is a useful starting
point.

Acknowledgments

This work was performed under the auspices of the
U.S. Department of Energy by Lawrence Livermore Na-
tional Laboratory under contract number W-7405-ENG-
48, with specific support from an internal LDRD grant.
Barry Becker helped with some of the programming and
debugging, and Jan Nunes helped with the video produc-
tion. Th HEPA filter data is courtesry of Bob Corey at
LLNL. The Aerogel data is courtesy of Tony Ladd and
Elaine Chandler, both at LLNL. We would also like to
thank the reviewers for their valuable comments.

Hairs

We tried to use the line bundles to represent the flow
around or near a surface. This broke down when the flow
was slightly into the surface. A solution is to grow tiny
hairs coming out of the surface. We draw the line seg-
ments out of the surface first and then have them bend in
the flow field, much like normal hair. Several controls over
this behavior are offered. The physical layout of the hairs
are specified by a number of connected line segments, by
an interpolation of the normal vector and the velocity vec-
tor, and by a stiffness or weighting factor per segment. The
default number of segments is six, and all of the images
here were generated using only six segments. The interpo-
lation is completely specified by the user with coefficients
ti at each line segment point. A new directional vector is
generated using the formula:Direction = wi * (ti * Nor-
mal + (1-ti) * Velocity * Velocity_Scale). TheNormal vec-
tor is normalized, and the velocity is scaled by the user
parameterVelocity_Scale.Smooth curves or sharp bends
can be specified with the properti’s. TheDirection vector
is then added to the endpoint of the last line segment. The
weighting bywi is useful to control the apparent stiffness
of the hair. Greater weights can be given to the initial seg-
ment in the direction of the normal, lower weights to the
middle segments and finally, large weights can be given to
the last one or two line segments to produce longer hairs in
the velocity direction. This defines an individual hair. A
number of hairs are scattered throughout the splat volume
and jittered from one splat to the next. The splats are posi-
tioned near the contour surface by the method of Levoy
discussed above. They are moved towards the contour sur-
face by a multiple of the gradient.

The color and transparency of the hairs are controlled
by a weighted function of the hair’s root color, a specified
splat color, a vector head color, and an HSV space jitter-
ing. The user specifies a root color and a vector head color.
A splat color is derived from a scalar field to color table
mapping. At each segment, the user can specify the frac-
tion of the root color, the fraction of the splat color, and the
fraction of the vector head color that the endpoint of that
segment should be. A random jitter is added to this final
color. The jittering is controlled by a scale factor for each
component. All computations are performed in HSV
space, with the hue wrapping around from one to zero, and
the saturation and value components clamped at zero and
one. A transparency value is also specified at each seg-
ment. No jittering is applied to this.

Figure 14 shows our tornado with very sparse and
opaque hairs. With these settings you can clearly see the
hairs coming from the normal direction and bending into
the velocity direction. Figure 15 has more hairs that are
much more transparent.

Hedge-
hogs

Particle
Trace

Stream
Line

Stream
Ribbon

Flow
Volume

Textured
 Splats

Stream
Surface LIC Spot

Noise
Line

Bundles

Constrai
ned

Stream
Lines

Hairs

Dimensionality 0D/1D 0D 1D 2D 3D 3D 2D/3D 2D/3D 3D 3D 2D 2D

Hardware
Accelerated ● ● ● ● ● ● ❍ ❍ ● ● ● ◗

Doesn’t
Require

Advection
● ❍ ❍ ❍ ❍ ● ❍ ❍ ❍ ● ❍ ●

Dynamic
Motion ❍ ● ❍ ❍ ◗ ● ❍ ● ● ❍ ● ❍

Global
Representation ◗ ❍ ❍ ❍ ● ● ◗ ● ● ● ❍ ❍

Near Surfaces ❍ ❍ ❍ ❍ ❍ ◗ ❍ ◗ ● ◗ ● ●

Near
Tangential
Surfaces

❍ ❍ ❍ ❍ ❍ ❍ ● ● ● ● ● ❍

Unsteady
Flows ❍ ● ❍ ❍ ◗ ● ❍ ◗ ❍ ● ❍ ◗

User Probing ❍ ● ● ● ● ❍ ◗ ❍ ❍ ❍ ❍ ❍

Interactive
Rendering ◗ ● ● ● ● ◗ ◗ ❍ ◗ ● ❍ ●

Table 1: Comparison of 3D Vector Field Visualization Techniques

References

[Cabral93] Brian Cabral and Lieth Leedom, “Imaging vector
fields using line integral convolution,” Computer Graphics
Proceedings, Annual Conference Series, ACM Siggraph,
New York (1993) pp. 263 - 270

[Crawfis92] Roger Crawfis and Nelson Max, “Direct volume vi-
sualization of three dimensional vector fields,” Proceedings,
1992 Workshop on Volume Visualization, ACM Siggraph,
New York (1992) pp. 261 - 266

[Crawfis93] Roger Crawfis and Nelson Max, “Texture splats for
3D scalar and vector field visualization,” Proceedings, Visu-
alization ’93, IEEE Computer Society Press, Los Alamitos,
CA (1993) pp. 261 - 266

[Forsell94] Lisa Forssell, “Visualizing flow over curvilinear grid
surfaces using line integral convolution,” these proceedings.

Levoy88] Mark Levoy, “Display of surfaces from volume data,”
IEEE Computer Graphics and Applications Vol. 8, No. 5
(May 1988) pp. 29 - 37

[Shoup79] Richard Shoup “Color table animation,” Computer
Graphics Vol. 13 No. 4 (August 1979) pp. 8 - 13

[Stolk92] J. Stolk and J. J. van Wijk “Surface particles for 3D
flow visualization,” in “Advances in Scientific Visualiza-

tion,” F. H. Post and A. J. Hin, eds., Springer, Berlin (1992)
pp. 119 - 130

[VanGelder92] Allen Van Gelder and Jane Wilhelms, “Interac-
tive animated visualization of flow fields,” Proceedings, 1992
Workshop on Volume Visualization, ACM, New York (1992)
pp. 47 - 54

[vanWijk91] J. J. van Wijk “Spot noise: texture synthesis for data
visualization,” Computer Graphics Vol. 25 No. 4 (July 1991)
pp. 309 - 318

[vanWijk93] J. J. van Wijk “Flow visualization with surface par-
ticles,” IEEE Computer Graphics and Applications Vol. 13
No. 4 (July 1993) pp. 18 - 24

Figure 3.Spot noise rendering of HEPA filter..

Figure 9. Projected Streamlines - XY Projection.

Figure 13. Line bundle rendering of HEPA filter.

Figure 4. Spot noise near filter fibers.

Figure 12. Line bundle near aerogel surface.

Figure 15. Finer hair on tornado velocity contour.

